462 research outputs found

    Influence of the Cu-Te composition and microstructure on the resistive switching of Cu-Te/Al(2)O(3)/Si cells

    Get PDF
    In this letter, we explore the influence of the Cu(x)Te(1-x) layer composition (0.2 0.7 leads to large reset power, similar to pure-Cu electrodes, x < 0.3 results in volatile forming properties. The intermediate range 0.5< x < 0.7 shows optimum memory properties, featuring improved control of filament programming using <5 mu A as well as state stability at 85 degrees C. The composition-dependent programming control and filament stability are closely associated with the phases in the Cu(x)Te(1-x) layer and are explained as related to the chemical affinity between Cu and Te. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3621835

    Introduction of WO3 Layer in a Cu-Based Al2O3 Conductive Bridge RAM System for Robust Cycling and Large Memory Window

    Get PDF
    In this paper, we optimize a WO3\Al2O3 bilayer serving as the electrolyte of a conductive bridge RAM device using a Cu-based supply layer. By introducing a WO3 layer formed by thermal oxidation of a W plug, the hourglass shape of the conductive filament is desirably controlled, enabling excellent switching behavior. We demonstrate a clear improvement of the microstructure and density of the WO3 layer by increasing the oxidation time and temperature, resulting in a strong increase of the high-resistance-state breakdown voltage. The high quality WO3 microstructure allows thus the use of a larger reset pulse amplitude resulting both in larger memory window and failure-free write cycling.1197Ysciescopu

    Microscopic origin of random telegraph noise fluctuations in aggressively scaled RRAM and its impact on read disturb variability

    Get PDF
    Random telegraph noise (RTN) is an important intrinsic phenomenon of any logic or memory device that is indicative of the reliability and stochastic variability in its performance. In the context of the resistive random access memory (RRAM), RTN becomes a key criterion that determines the read disturb immunity and memory window between the low (LRS) and high resistance states (HRS). With the drive towards ultra-low power memory (low reset current) and aggressive scaling to 10 × 10 nm2 area, contribution of RTN is significantly enhanced by every trap (vacancy) in the dielectric. The underlying mechanisms governing RTN in RRAM are yet to be fully understood. In this study, we aim to decode the role of conductance fluctuations caused by oxygen vacancy transport and inelastic electron trapping and detrapping processes. The influence of resistance state (LRS, shallow and deep HRS), reset depth and reset stop voltage (VRESET-STOP) on the conductance variability is also investigated. © 2013 IEEE

    Optical Transitions in Single-Wall Boron Nitride Nanotubes

    Get PDF
    Optical transitions in single-wall boron nitride nanotubes are investigated by means of optical absorption spectroscopy. Three absorption lines are observed. Two of them (at 4.45 and 5.5 eV) result from the quantification involved by the rolling up of the hexagonal boron nitride (h-BN) sheet. The nature of these lines is discussed, and two interpretations are proposed. A comparison with single-wall carbon nanotubes leads one to interpret these lines as transitions between pairs of van Hove singularities in the one-dimensional density of states of boron nitride single-wall nanotubes. But the confinement energy due to the rolling up of the h-BN sheet cannot explain a gap width of the boron nitride nanotubes below the h-BN gap. The low energy line is then attributed to the existence of a Frenkel exciton with a binding energy in the 1 eV range

    Secondary nucleating sequences affect kinetics and thermodynamics of tau aggregation

    Get PDF
    Tau protein was scanned for highly amyloidogenic sequences in amphiphilic motifs (X)nZ, Z(X)nZ (n≥2) or (XZ)n (n≥2), where X is a hydrophobic residue and Z is a charged or polar residue. N-acetyl peptides homologous to these sequences were used to study aggregation. Transmission electron microscopy (TEM) showed 7 peptides, in addition to well known primary nucleating sequences c275VQIINK (AcPHF6*) and Ac306VQIVYK (AcPHF6), formed fibers, tubes, ribbons or rolled sheets. Of the peptides shown by TEM to form amyloid, Ac10VME, AcPHF6*, Ac375KLTFR, and Ac393VYK were found to enhance the fraction of β-structure of AcPHF6 formed at equilibrium, and Ac375KLTFR was found to inhibit AcPHF6 and AcPHF6* aggregation kinetics in a dose-dependent manner, consistent with its participation in a hybrid steric zipper model. Single site mutants were generated which transformed predicted amyloidogenic sequences in tau into non-amyloidogenic ones. A M11K mutant had fewer filaments and showed a decrease in aggregation kinetics and an increased lag time compared to wild type tau, while a F378K mutant showed significantly more filaments. Our results infer that sequences throughout tau, in addition to PHF6 and PHF6*, can seed amyloid formation or affect aggregation kinetics or thermodynamics

    The over-reset phenomenon in Ta2O5 RRAM device investigated by the RTN-based defect probing technique

    Get PDF
    IEEE Despite the tremendous efforts in the past decade devoted to the development of filamentary resistive-switching devices (RRAM), there is still a lack of in-depth understanding of its over-reset phenomenon. At higher reset stop voltages that exceed a certain threshold, the resistance at high resistance state reduces, leading to an irrecoverable window reduction. The over-reset phenomenon limits the maximum resistance window that can be achieved by using a higher Vreset, which also degrades its potential in applications such as multi-level memory and neuromorphic synapses. In this work, the over-reset is investigated by cyclic reset operations with incremental stop voltages, and is explained by defect generation in the filament constriction region of Ta2O5 RRAM devices. This is supported by the statistical spatial defects profile obtained from the random telegraph noise based defect probing technique. The impact of forming compliance current on the over-reset is also evaluated

    Doped GeSe materials for selector applications

    Get PDF
    We report on the thermal and electrical performance of nitrogen (N) and carbon (C) doped GeSe thin films for selector applications. Doping of GeSe successfully improved its thermal stability to 450 degrees C. N doping led to a decrease in the off-state leakage and an increase in threshold voltage (V-th), while C doping led to an increase in leakage and reduced V-th. Hence, we show an effective method to tune the electrical parameters of GeSe selectors by using N and C as dopants

    RTN in GexSe1-x OTS Selector Devices

    Get PDF
    Random telegraph noise (RTN) signals in GexSe1-x ovonic threshold switching (OTS) selector have been analyzed in this work, both before and after the first-fire (FF) operation and at on- and off-states. It is observed that RTN appears after the FF, and its absolute amplitude at the off-state is small and negligible in comparison with the RTN signals in RRAM devices. At the on-state, large RTN signals are observed, which can either partially or fully block the conduction path, supporting that a conductive filament is formed or activated by FF and then modulated during switching. Statistical analysis reveals that the relative RTN amplitude at on-state in GexSe1-x OTS selector is smaller than or equivalent to those in RRAM devices

    Stochastic computing based on volatile GeSe ovonic threshold switching selectors

    Get PDF
    Stochastic computing (SC) is a special type of digital compute strategy where values are represented by the probability of 1 and 0 in stochastic bit streams, which leads to superior hardware simplicity and error-tolerance. In this paper, we propose and demonstrate SC with GeSe based Ovonic Threshold Switching (OTS) selector devices by exploiting their probabilistic switching behavior. The stochastic bit streams generated by OTS are demonstrated with good computation accuracy in both multiplication operation and image processing circuit. Moreover, the bit distribution has been statistically studied and linked to the collective defect de/localization behavior in the chalcogenide material. Weibull distribution of the delay time supports the origin of such probabilistic switching, facilitates further optimization of the operation condition, and lays the foundation for device modelling and circuit design. Considering its other advantages such as simple structure, fast speed, and volatile nature, OTS is a promising material for implementing SC in a wide range of novel applications, such as image processors, neural networks, control systems and reliability analysis
    corecore